A cryofuge for cold-collision experiments with slow polar molecules

See allHide authors and affiliations

Science  03 Nov 2017:
Vol. 358, Issue 6363, pp. 645-648
DOI: 10.1126/science.aan3029

You are currently viewing the abstract.

View Full Text

Log in to view the full text

Log in through your institution

Log in through your institution

Cooling molecules in the spin cycle

A block of ice might look solid, but the molecules inside it are shaking vigorously. Slowing molecules all the way down in the laboratory offers enticing prospects to study and apply their quantum behavior. However, methods to cool dense samples to the necessary temperatures below 1 K have tended to be restricted to rather specialized diatomics. Wu et al. present a general cooling technique that applies to a wide range of conventional polar molecules such as methanol, fluoromethane, and ammonia. Their apparatus combines a preliminary cooling step in a buffer gas with a centrifuge that spins the molecules down using electric fields.

Science, this issue p. 645


Ultracold molecules represent a fascinating research frontier in physics and chemistry, but it has proven challenging to prepare dense samples at low velocities. Here, we present a solution to this goal by means of a nonconventional approach dubbed cryofuge. It uses centrifugal force to bring cryogenically cooled molecules to kinetic energies below 1 K × kB in the laboratory frame, where kB is the Boltzmann constant, with corresponding fluxes exceeding 1010 per second at velocities below 20 meters per second. By attaining densities higher than 109 per cubic centimeter and interaction times longer than 25 milliseconds in samples of fluoromethane as well as deuterated ammonia, we observed cold dipolar collisions between molecules and determined their collision cross sections.

View Full Text