Research Article

Photoionization in the time and frequency domain

See allHide authors and affiliations

Science  17 Nov 2017:
Vol. 358, Issue 6365, pp. 893-896
DOI: 10.1126/science.aao7043

You are currently viewing the abstract.

View Full Text

Log in to view the full text

Log in through your institution

Log in through your institution

Resetting the clock on photoemission

The ability to produce attosecond pulses of light provides access to some of the fastest electronic processes occurring within atoms. Tracking the temporal dynamics of the photoemission process in which an atom absorbs a high-energy photon and the electron escapes has exposed a discrepancy between the initial experimental findings and subsequent theoretical modeling. Isinger et al. present an ultrafast process that can account for and distinguish the different contributions to the photoemission processes in neon atoms. The findings reveal an “electron shake-up” process that may explain the discrepancy, bringing closure to a 7-year discussion.

Science, this issue p. 893


Ultrafast processes in matter, such as the electron emission after light absorption, can now be studied using ultrashort light pulses of attosecond duration (10−18 seconds) in the extreme ultraviolet spectral range. The lack of spectral resolution due to the use of short light pulses has raised issues in the interpretation of the experimental results and the comparison with theoretical calculations. We determine photoionization time delays in neon atoms over a 40–electron volt energy range with an interferometric technique combining high temporal and spectral resolution. We spectrally disentangle direct ionization from ionization with shake-up, in which a second electron is left in an excited state, and obtain excellent agreement with theoretical calculations, thereby solving a puzzle raised by 7-year-old measurements.

View Full Text