Report

Crystal structure of a TAPBPR–MHC I complex reveals the mechanism of peptide editing in antigen presentation

See allHide authors and affiliations

Science  24 Nov 2017:
Vol. 358, Issue 6366, pp. 1064-1068
DOI: 10.1126/science.aao5154

You are currently viewing the abstract.

View Full Text

Log in to view the full text

Log in through your institution

Log in through your institution

Two snapshots of the TAPBPR-MHC I complex

Cytotoxic CD8+ T cells recognize infected and cancerous cells by scrutinizing the antigenic peptides presented by the major histocompatibility complex class I (MHC I). Peptide binding and exchange occurs in the endoplasmic reticulum in a sequence of events mediated by the chaperones tapasin and TAPBPR (see the Perspective by Cresswell). Thomas and Tampé resolved the crystal structure of the TAPBPR-MHC I editing complex by using a photocleavable high-affinity peptide to stabilize the MHC molecule. Jiang et al. crystalized MHC I molecules inhabited by truncated disulfide-linked peptides that still permit TAPBPR to bind. These complimentary snapshots elucidate the dynamic process by which chaperones stabilize the groove of peptide-free MHC I molecules. This helps MHC I sample peptide candidates and facilitates the generation of peptide repertoires enriched with high-affinity antigenic peptides.

Science, this issue p. 1060, p. 1064; see also p. 992

Abstract

Central to CD8+ T cell–mediated immunity is the recognition of peptide–major histocompatibility complex class I (p–MHC I) proteins displayed by antigen-presenting cells. Chaperone-mediated loading of high-affinity peptides onto MHC I is a key step in the MHC I antigen presentation pathway. However, the structure of MHC I with a chaperone that facilitates peptide loading has not been determined. We report the crystal structure of MHC I in complex with the peptide editor TAPBPR (TAP-binding protein–related), a tapasin homolog. TAPBPR remodels the peptide-binding groove of MHC I, resulting in the release of low-affinity peptide. Changes include groove relaxation, modifications of key binding pockets, and domain adjustments. This structure captures a peptide-receptive state of MHC I and provides insights into the mechanism of peptide editing by TAPBPR and, by analogy, tapasin.

View Full Text