Numerical evidence of fluctuating stripes in the normal state of high-Tc cuprate superconductors

See allHide authors and affiliations

Science  01 Dec 2017:
Vol. 358, Issue 6367, pp. 1161-1164
DOI: 10.1126/science.aak9546

You are currently viewing the abstract.

View Full Text

Log in to view the full text

Log in through your institution

Log in through your institution

Numerics converging on stripes

The Hubbard model (HM) describes the behavior of interacting particles on a lattice where the particles can hop from one lattice site to the next. Although it appears simple, solving the HM when the interactions are repulsive, the particles are fermions, and the temperature is low—all of which applies in the case of correlated electron systems—is computationally challenging. Two groups have tackled this important problem. Huang et al. studied a three-band version of the HM at finite temperature, whereas Zheng et al. used five complementary numerical methods that kept each other in check to discern the ground state of the HM. Both groups found evidence for stripes, or one-dimensional charge and/or spin density modulations.

Science, this issue p. 1161, p. 1155


Upon doping, Mott insulators often exhibit symmetry breaking where charge carriers and their spins organize into patterns known as stripes. For high–transition temperature cuprate superconductors, stripes are widely suspected to exist in a fluctuating form. We used numerically exact determinant quantum Monte Carlo calculations to demonstrate dynamical stripe correlations in the three-band Hubbard model, which represents the local electronic structure of the copper-oxygen plane. Our results, which are robust to varying parameters, cluster size, and boundary conditions, support the interpretation of experimental observations such as the hourglass magnetic dispersion and the Yamada plot of incommensurability versus doping in terms of the physics of fluctuating stripes. These findings provide a different perspective on the intertwined orders emerging from the cuprates’ normal state.

View Full Text