Review

Metalenses: Versatile multifunctional photonic components

See allHide authors and affiliations

Science  01 Dec 2017:
Vol. 358, Issue 6367, eaam8100
DOI: 10.1126/science.aam8100

You are currently viewing the abstract.

View Full Text

Log in to view the full text

Log in through your institution

Log in through your institution

Looking sharp with metalenses

High-end imaging lenses have tended to be based on bulk optical components. Advances in fabrication techniques have enabled the development of ultrathin, lightweight, and planar lenses (metalenses) that have unprecedented functionalities. These metalenses have the potential to replace or complement their conventional bulk counterparts. Khorasaninejad and Capasso review the evolution of metalenses, summarizing achievements and applications and identifying future challenges and opportunities. Metalenses can have numerous applications, ranging from cellphone camera modules, to wearable displays for augmented and virtual reality and machine vision, to bio-imaging and endoscopy.

Science, this issue p. eaam8100

Structured Abstract

BACKGROUND

Future high-performance portable and wearable optical devices and systems with small footprints and low weights will require components with small form factors and enhanced functionality. Planar components based on diffractive optics (e.g., gratings, Fresnel lenses) and thin-film optics (e.g., dielectric filters, Bragg reflectors) have been around for decades; however, their limited functionality and difficulty of integration have been key incentives to search for better alternatives. Owing to its potential for vertical integration and marked design flexibility, metasurface-based flat optics provides a rare opportunity to overcome these challenges. The building blocks (BBs) of metasurfaces are subwavelength-spaced scatterers. By suitably adjusting their shape, size, position, and orientation with high spatial resolution, one can control the basic properties of light (phase, amplitude, polarization) and thus engineer its wavefront at will. This possibility greatly expands the frontiers of optical design by enabling multifunctional components with attendant reduction of thickness, size, and complexity.

ADVANCES

Recent progress in fabrication techniques and in the theory and design of metasurfaces holds promise for this new optical platform (metaoptics) to replace or complement conventional components in many applications. One major advance has been the migration to all-dielectric metasurfaces. Here, we discuss the key advantages of using dielectric phase-shifting elements with low optical loss and strong light confinement in the visible and near-infrared regions as BBs of flat lenses (metalenses). High–numerical aperture metalenses that are free of spherical aberrations have been implemented to achieve diffraction-limited focusing with subwavelength resolution, without requiring the complex shapes of aspherical lenses. Achromatic metalenses at discrete wavelengths and over a bandwidth have been realized by dispersion engineering of the phase shifters. By suitably adjusting the geometrical parameters of the latter, one can impart polarization- and wavelength-dependent phases to realize multifunctional metalenses with only one ultrathin layer. For example, polarization-sensitive flat lenses for chiral imaging and circular dichroism spectroscopy with high resolution have been realized, and off-axis metalenses with large engineered angular dispersion have been used to demonstrate miniature spectrometers. The fabrication of metalenses is straightforward and often requires one-step lithography, which can be based on high-throughput techniques such as deep-ultraviolet and nanoimprint lithography.

OUTLOOK

In the near future, the ability to fabricate metalenses and other metaoptical components with a planar process using the same lithographic tools for manufacturing integrated circuits (ICs) will have far-reaching implications. We envision that camera modules widely employed in cell phones, laptops, and myriad applications will become thinner and easier to optically align and package, with metalenses and the complementary metal-oxide semiconductor–compatible sensor manufactured by the same foundries. The unprecedented design freedom of metalenses and other metasurface optical components will greatly expand the range of applications of micro-optics and integrated optics. We foresee a rapidly increasing density of nanoscale optical elements on metasurface-based chips, with attendant marked increases in performance and number of functionalities. Such digital optics will probably follow a Moore-like law, similar to that governing the scaling of ICs, leading to a wide range of high-volume applications.

All-dielectric metalenses.

(A) Schematic of a dielectric pillar acting as a truncated waveguide for phase-shifting the incident light. (B) Top-view scanning electron microscopy image of a metalens based on titanium dioxide, with dielectric pillars as BBs. (C) Schematic of an achromatic metalens realized by engineering the dispersive response of its BBs. (D) Schematic of a chiral metalens that spatially separates and focuses light with different helicities. (E) Schematic of a metalens that simultaneously focuses and disperses the incident light. (F) Illustration of the concept of vertically stacking metasurfaces to build miniaturized multifunctional systems.

ILLUSTRATIONS: RYAN ALLEN/SECOND BAY STUDIOS

Abstract

Recent progress in metasurface designs fueled by advanced-fabrication techniques has led to the realization of ultrathin, lightweight, and flat lenses (metalenses) with unprecedented functionalities. Owing to straightforward fabrication, generally requiring a single-step lithography, and the possibility of vertical integration, these planar lenses can potentially replace or complement their conventional refractive and diffractive counterparts, leading to further miniaturization of high-performance optical devices and systems. Here we provide a brief overview of the evolution of metalenses, with an emphasis on the visible and near-infrared spectrum, and summarize their important features: diffraction-limited focusing, high-quality imaging, and multifunctionalities. We discuss impending challenges, including aberration correction, and also examine current issues and solutions. We conclude by providing an outlook of this technology platform and identifying promising directions for future research.

View Full Text