Report

Disorder-induced optical transition from spin Hall to random Rashba effect

See allHide authors and affiliations

Science  15 Dec 2017:
Vol. 358, Issue 6369, pp. 1411-1415
DOI: 10.1126/science.aap8640

You are currently viewing the abstract.

View Full Text

Log in to view the full text

Log in through your institution

Log in through your institution

Phase transition of scattered light

Disordered structures can give rise to intriguing scattering phenomena owing to the unpredictable nature of their interaction with light. Using subwavelength-scale disordered metasurfaces, Maguid et al. observed a phase transition in how the light is scattered as a function of disorder. Weak disorder induced a photonic spin Hall effect, whereas strong disorder led to spin-split modes in momentum space, a random optical-Rashba effect. Thus, designed photonic structure could offer a versatile platform to study similar phenomena in complex solid-state systems.

Science, this issue p. 1411

Abstract

Disordered structures give rise to intriguing phenomena owing to the complex nature of their interaction with light. We report on photonic spin-symmetry breaking and unexpected spin-optical transport phenomena arising from subwavelength-scale disordered geometric phase structure. Weak disorder induces a photonic spin Hall effect, observed via quantum weak measurements, whereas strong disorder leads to spin-split modes in momentum space, a random optical Rashba effect. Study of the momentum space entropy reveals an optical transition upon reaching a critical point where the structure’s anisotropy axis vanishes. Incorporation of singular topology into the disordered structure demonstrates repulsive vortex interaction depending on the disorder strength. The photonic disordered geometric phase can serve as a platform for the study of different phenomena emerging from complex media involving spin-orbit coupling.

View Full Text