Report

RALF4/19 peptides interact with LRX proteins to control pollen tube growth in Arabidopsis

See allHide authors and affiliations

Science  22 Dec 2017:
Vol. 358, Issue 6370, pp. 1600-1603
DOI: 10.1126/science.aao5467

You are currently viewing the abstract.

View Full Text

Log in to view the full text

Log in through your institution

Log in through your institution

Timing a switch in tissue integrity

In plants, sperm cells travel through the pollen tube as it grows toward the ovule. Successful fertilization depends on the pollen tube rupturing to release the sperm cells (see the Perspective by Stegmann and Zipfel). Ge et al. and Mecchia et al. elucidated the intercellular cross-talk that maintains pollen tube integrity during growth but destroys it at just the right moment. The signaling peptides RALF4 and RALF19, derived from the pollen tube, maintain its integrity as it grows. Once in reach of the ovule, a related signaling peptide, RALF34, which derives from female tissues, takes over and causes rupture of the pollen tube.

Science, this issue p. 1596, p. 1600; see also p. 1544

Abstract

The communication of changes in the extracellular matrix to the interior of the cell is crucial for a cell’s function. The extracellular peptides of the RAPID ALKALINIZATION FACTOR (RALF) family have been identified as ligands of receptor-like kinases of the CrRLK1L subclass, but the exact mechanism of their perception is unclear. We found that Arabidopsis RALF4 and RALF19 redundantly regulate pollen tube integrity and growth, and that their function depends on pollen-expressed proteins of the LEUCINE-RICH REPEAT EXTENSIN (LRX) family, which play a role in cell wall development but whose mode of action is not understood. The LRX proteins interact with RALFs, monitoring cell wall changes, which are communicated to the interior of the pollen tube via the CrRLK1L pathway to sustain normal growth.

  • Present address: Biozentrum, University of Basel, 4056 Basel, Switzerland.

View Full Text