Report

Chiromagnetic nanoparticles and gels

See allHide authors and affiliations

Science  19 Jan 2018:
Vol. 359, Issue 6373, pp. 309-314
DOI: 10.1126/science.aao7172

You are currently viewing the abstract.

View Full Text

Log in to view the full text

Log in through your institution

Log in through your institution

Boosting chiral nanoparticle responses

Optical nanomaterials that combine chirality and magnetism are useful for magneto-optics and as chiral catalysts. Although chiral inorganic nanostructures can exhibit high circular dichroism, modulating this optical activity has usually required irreversible chemical changes. Yeom et al. synthesized paramagnetic cobalt oxide (Co3O4) nanoparticles with l- and d-cysteine surface ligands. These ligands created chiral distortions of the crystal lattices, and this anisotropy led to much stronger chiroptical activity. The circular dichroism in the ultraviolet of nanoparticle gels could be modulated with magnetic fields of ∼1.5 tesla.

Science, this issue p. 309

Abstract

Chiral inorganic nanostructures have high circular dichroism, but real-time control of their optical activity has so far been achieved only by irreversible chemical changes. Field modulation is a far more desirable path to chiroptical devices. We hypothesized that magnetic field modulation can be attained for chiral nanostructures with large contributions of the magnetic transition dipole moments to polarization rotation. We found that dispersions and gels of paramagnetic Co3O4 nanoparticles with chiral distortions of the crystal lattices exhibited chiroptical activity in the visible range that was 10 times as strong as that of nonparamagnetic nanoparticles of comparable size. Transparency of the nanoparticle gels to circularly polarized light beams in the ultraviolet range was reversibly modulated by magnetic fields. These phenomena were also observed for other nanoscale metal oxides with lattice distortions from imprinted amino acids and other chiral ligands. The large family of chiral ceramic nanostructures and gels can be pivotal for new technologies and knowledge at the nexus of chirality and magnetism.

View Full Text