Research Article

Morphology, muscle capacity, skill, and maneuvering ability in hummingbirds

See allHide authors and affiliations

Science  09 Feb 2018:
Vol. 359, Issue 6376, pp. 653-657
DOI: 10.1126/science.aao7104

You are currently viewing the abstract.

View Full Text

Log in to view the full text

Log in through your institution

Log in through your institution

Making quick turns

Hummingbirds are well known for their impressive maneuvering during flight. Dakin et al. used a computer vision approach to characterize the details of flight in >200 hummingbirds from 25 species (see the Perspective by Wainwright). Larger species had enhanced agility owing to increased muscle mass. In all species, muscles dictated transitional movement, whereas wing shape facilitated sharp turns and rapid rotations. Species, and individuals within species, played on their strengths by combining inherent traits and learned skills.

Science, this issue p. 653; see also p. 636

Abstract

How does agility evolve? This question is challenging because natural movement has many degrees of freedom and can be influenced by multiple traits. We used computer vision to record thousands of translations, rotations, and turns from more than 200 hummingbirds from 25 species, revealing that distinct performance metrics are correlated and that species diverge in their maneuvering style. Our analysis demonstrates that the enhanced maneuverability of larger species is explained by their proportionately greater muscle capacity and lower wing loading. Fast acceleration maneuvers evolve by recruiting changes in muscle capacity, whereas fast rotations and sharp turns evolve by recruiting changes in wing morphology. Both species and individuals use turns that play to their strengths. These results demonstrate how both skill and biomechanical traits shape maneuvering behavior.

View Full Text