In DepthComputer Science

Artificial intelligence faces reproducibility crisis

See allHide authors and affiliations

Science  16 Feb 2018:
Vol. 359, Issue 6377, pp. 725-726
DOI: 10.1126/science.359.6377.725

You are currently viewing the summary.

View Full Text

Log in to view the full text

Log in through your institution

Log in through your institution

Summary

The booming field of artificial intelligence (AI) is grappling with a replication crisis, much like the ones that have afflicted psychology, medicine, and other fields over the past decade. Just because algorithms are based on code doesn't mean experiments are easily replicated. Far from it. Unpublished codes and a sensitivity to training conditions have made it difficult for AI researchers to reproduce many key results. That is leading to a new conscientiousness about research methods and publication protocols. Last week, at a meeting of the Association for the Advancement of Artificial Intelligence in New Orleans, Louisiana, reproducibility was on the agenda, with some teams diagnosing the problem—and one laying out tools to mitigate it.