Evolution of alluvial mudrock forced by early land plants

See allHide authors and affiliations

Science  02 Mar 2018:
Vol. 359, Issue 6379, pp. 1022-1024
DOI: 10.1126/science.aan4660

You are currently viewing the abstract.

View Full Text

Log in to view the full text

Log in through your institution

Log in through your institution

Mudrocks get a vegetative assist

Mudrocks such as slate and shale are rarely found in stratigraphy older than about 500 million years. McMahon and Davies compiled a large database of mudrock occurrence over the past 3.5 billion years to help assess the origin of this ubiquitous rock type (see the Perspective by Fischer). Mudrocks appeared at the same time as did deep-rooted land plants. The interplay between plants and sedimentary rocks suggests that a change in erosion rate and the chemistry of sediments delivered to the oceans occurred around 500 million years ago.

Science, this issue p. 1022; see also p. 994


Mudrocks are a primary archive of Earth’s history from the Archean eon to recent times, and their source-to-sink production and deposition play a central role in long-term ocean chemistry and climate regulation. Using original and published stratigraphic data from all 704 of Earth’s known alluvial formations from the Archean eon (3.5 billion years ago) to the Carboniferous period (0.3 billion years ago), we prove contentions of an upsurge in the proportion of mud retained on land coeval with vegetation evolution. We constrain the onset of the upsurge to the Ordovician-Silurian and show that alluvium deposited after land plant evolution contains a proportion of mudrock that is, on average, 1.4 orders of magnitude greater than the proportion contained in alluvium from the preceding 90% of Earth’s history. We attribute this shift to the ways in which vegetation revolutionized mud production and sediment flux from continental interiors.

View Full Text