Incomplete host immunity favors the evolution of virulence in an emergent pathogen

See allHide authors and affiliations

Science  02 Mar 2018:
Vol. 359, Issue 6379, pp. 1030-1033
DOI: 10.1126/science.aao2140

You are currently viewing the abstract.

View Full Text

Log in to view the full text

Log in through your institution

Log in through your institution

Ratcheting up wild virulence

Partially protective vaccination can sometimes select for increasingly virulent pathogens. Fleming-Davies et al. asked what happens in a natural system. In the United States, the house finch population is suffering an increasingly virulent epidemic caused by Mycoplasma gallisepticum. The pathogen induces incomplete immunity that clears less virulent pathogens and offers partial protection against strains of greater virulence. In the birds, the partial immune response does away with competition from the less virulent pathogens. The partial immunity of the host also hinders replication of the more virulent pathogens enough to allow some birds to survive. This allows increasingly virulent forms of the pathogen to be transmitted.

Science, this issue p. 1030


Immune memory evolved to protect hosts from reinfection, but incomplete responses that allow future reinfection may inadvertently select for more-harmful pathogens. We present empirical and modeling evidence that incomplete immunity promotes the evolution of higher virulence in a natural host-pathogen system. We performed sequential infections of house finches with Mycoplasma gallisepticum strains of various levels of virulence. Virulent bacterial strains generated stronger host protection against reinfection than less virulent strains and thus excluded less virulent strains from infecting previously exposed hosts. In a two-strain model, the resulting fitness advantage selected for an almost twofold increase in pathogen virulence. Thus, the same immune systems that protect hosts from infection can concomitantly drive the evolution of more-harmful pathogens in nature.

View Full Text