Local transformations of the hippocampal cognitive map

See allHide authors and affiliations

Science  09 Mar 2018:
Vol. 359, Issue 6380, pp. 1143-1146
DOI: 10.1126/science.aao4960

You are currently viewing the abstract.

View Full Text

Log in to view the full text

Log in through your institution

Log in through your institution

The mechanisms behind grid cell changes

When grid cells were first discovered in the brain, the grids were considered to have rigid coordinates beyond the borders of the testing environments. However, recent findings suggest that the grid cell pattern can be altered easily by changing the space of the enclosure. But how? Krupic et al. discovered that local changes in the geometry of the environment shifted individual neighboring grid fields, while more distant fields remained unchanged. Thus, changes to the grid structure are localized. Stable landmarks continue to exert an effect on most grid cells, whereas the ones close to changed borders are modified.

Science, this issue p. 1143


Grid cells are neurons active in multiple fields arranged in a hexagonal lattice and are thought to represent the “universal metric for space.” However, they become nonhomogeneously distorted in polarized enclosures, which challenges this view. We found that local changes to the configuration of the enclosure induce individual grid fields to shift in a manner inversely related to their distance from the reconfigured boundary. The grid remained primarily anchored to the unchanged stable walls and showed a nonuniform rescaling. Shifts in simultaneously recorded colocalized grid fields were strongly correlated, which suggests that the readout of the animal’s position might still be intact. Similar field shifts were also observed in place and boundary cells—albeit of greater magnitude and more pronounced closer to the reconfigured boundary—which suggests that there is no simple one-to-one relationship between these three different cell types.

View Full Text