Oklahoma's induced seismicity strongly linked to wastewater injection depth

See allHide authors and affiliations

Science  16 Mar 2018:
Vol. 359, Issue 6381, pp. 1251-1255
DOI: 10.1126/science.aap7911

You are currently viewing the abstract.

View Full Text

Log in to view the full text

Log in through your institution

Log in through your institution

Injection depth matters for induced earthquakes

Wastewater injection has induced earthquakes in Oklahoma, but the relative importance of operational and geologic parameters in triggering such earthquakes is unclear. Hincks et al. developed an advanced Bayesian network to determine the interplay between these parameters in Oklahoma. The injection depth above the crystalline basement was the most important parameter when considering the potential for release of seismic energy. This modeling strategy may provide a way to improve forecasts of the impact of proposed regulatory changes on induced seismicity.

Science, this issue p. 1251


The sharp rise in Oklahoma seismicity since 2009 is due to wastewater injection. The role of injection depth is an open, complex issue, yet critical for hazard assessment and regulation. We developed an advanced Bayesian network to model joint conditional dependencies between spatial, operational, and seismicity parameters. We found that injection depth relative to crystalline basement most strongly correlates with seismic moment release. The joint effects of depth and volume are critical, as injection rate becomes more influential near the basement interface. Restricting injection depths to 200 to 500 meters above basement could reduce annual seismic moment release by a factor of 1.4 to 2.8. Our approach enables identification of subregions where targeted regulation may mitigate effects of induced earthquakes, aiding operators and regulators in wastewater disposal regions.

View Full Text