Early life experience drives structural variation of neural genomes in mice

See allHide authors and affiliations

Science  23 Mar 2018:
Vol. 359, Issue 6382, pp. 1395-1399
DOI: 10.1126/science.aah3378

You are currently viewing the abstract.

View Full Text

Log in to view the full text

Log in through your institution

Log in through your institution

Genomic plasticity during brain development

Mice genomes contain many mobile retrotransposons. Bedrosian et al. analyzed DNA from the mouse hippocampus during development (see the Perspective by Song and Gleeson). They found that the amount of maternal care in the first few weeks of a mouse pup's life affected the number of copies of the L1 retrotransposon. The experience of maternal care was thus “recorded” in the DNA of these mice pups during a time when the brain was still actively developing.

Science, this issue p. 1395; see also p. 1330


The brain is a genomic mosaic owing to somatic mutations that arise throughout development. Mobile genetic elements, including retrotransposons, are one source of somatic mosaicism in the brain. Retrotransposition may represent a form of plasticity in response to experience. Here, we use droplet digital polymerase chain reaction to show that natural variations in maternal care mediate the mobilization of long interspersed nuclear element–1 (LINE-1 or L1) retrotransposons in the hippocampus of the mouse brain. Increasing the amount of maternal care blocks the accumulation of L1. Maternal care also alters DNA methylation at YY1 binding sites implicated in L1 activation and affects expression of the de novo methyltransferase DNMT3a. Our observations indicate that early life experience drives somatic variation in the genome via L1 retrotransposons.

View Full Text