Report

Binding of ISRIB reveals a regulatory site in the nucleotide exchange factor eIF2B

See allHide authors and affiliations

Science  30 Mar 2018:
Vol. 359, Issue 6383, pp. 1533-1536
DOI: 10.1126/science.aar5129

You are currently viewing the abstract.

View Full Text

Log in to view the full text

Log in through your institution

Log in through your institution

ISRIB mechanism of action

In rodents, a druglike small molecule named ISRIB enhances cognition and reverses cognitive deficits after traumatic brain injury. ISRIB activates a protein complex called eIF2B that is required for the synthesis of new proteins. Tsai et al. report the visualization of eIF2B bound to ISRIB at near-atomic resolution by cryo–electron microscopy. Biochemical studies revealed that ISRIB is a “molecular staple” that promotes assembly of the fully active form of eIF2B. Zyryanova et al. report similar structures together with information on the binding of ISRIB analogs and their effects on protein translation.

Science, this issue p. eaaq0939, p. 1533

Abstract

The integrated stress response (ISR) is a conserved translational and transcriptional program affecting metabolism, memory, and immunity. The ISR is mediated by stress-induced phosphorylation of eukaryotic translation initiation factor 2α (eIF2α) that attenuates the guanine nucleotide exchange factor eIF2B. A chemical inhibitor of the ISR, ISRIB, reverses the attenuation of eIF2B by phosphorylated eIF2α, protecting mice from neurodegeneration and traumatic brain injury. We describe a 4.1-angstrom-resolution cryo–electron microscopy structure of human eIF2B with an ISRIB molecule bound at the interface between the β and δ regulatory subunits. Mutagenesis of residues lining this pocket altered the hierarchical cellular response to ISRIB analogs in vivo and ISRIB binding in vitro. Our findings point to a site in eIF2B that can be exploited by ISRIB to regulate translation.

View Full Text