Report

Enzymatic construction of highly strained carbocycles

See allHide authors and affiliations

Science  06 Apr 2018:
Vol. 360, Issue 6384, pp. 71-75
DOI: 10.1126/science.aar4239

You are currently viewing the abstract.

View Full Text

Log in to view the full text

Log in through your institution

Log in through your institution

Double rings made with heme

Cyclic organic structures with adjacent three-carbon rings—bicyclobutanes—are useful starting materials for chemical and materials synthesis owing to their extreme ring strain. Constructing these molecules is a challenging task for organic chemists, especially if a single stereoisomer is desired. Chen et al. engineered a heme-containing enzyme to catalyze sequential carbene insertion reactions using an alkyne substrate. Starting with an enzyme that could only catalyze a single carbene insertion, a series of mutations led to variants that catalyzed efficient, stereoselective production of bicyclobutanes. By using a less reactive alkyne substrate and screening more variants with active site mutations, the authors found enzymes that stop at either enantiomer of the intermediate cyclopropene.

Science, this issue p. 71

Abstract

Small carbocycles are structurally rigid and possess high intrinsic energy due to their ring strain. These features lead to broad applications but also create challenges for their construction. We report the engineering of hemeproteins that catalyze the formation of chiral bicyclobutanes, one of the most strained four-membered systems, via successive carbene addition to unsaturated carbon-carbon bonds. Enzymes that produce cyclopropenes, putative intermediates to the bicyclobutanes, were also identified. These genetically encoded proteins are readily optimized by directed evolution, function in Escherichia coli, and act on structurally diverse substrates with high efficiency and selectivity, providing an effective route to many chiral strained structures. This biotransformation is easily performed at preparative scale, and the resulting strained carbocycles can be derivatized, opening myriad potential applications.

View Full Text