Report

Structural basis for coupling protein transport and N-glycosylation at the mammalian endoplasmic reticulum

See allHide authors and affiliations

Science  13 Apr 2018:
Vol. 360, Issue 6385, pp. 215-219
DOI: 10.1126/science.aar7899

You are currently viewing the abstract.

View Full Text

Log in to view the full text

Log in through your institution

Log in through your institution

A close-up view of oligosaccharyltransferase

Many secretory and membrane proteins are modified through the attachment of sugar chains by N-glycosylation. Such modification is required for correct protein folding, targeting, and functionality. In mammalian cells, N-glycosylation is catalyzed by the oligosaccharyltransferase (OST) complex via its STT3 subunit. OST forms a complex with the ribosome and the Sec61 protein translocation channel. Braunger et al. combined cryo–electron microscopy approaches to visualize mammalian ribosome-Sec61-OST complexes in order to build an initial molecular model for mammalian OST.

Science, this issue p. 215

Abstract

Protein synthesis, transport, and N-glycosylation are coupled at the mammalian endoplasmic reticulum by complex formation of a ribosome, the Sec61 protein-conducting channel, and oligosaccharyltransferase (OST). Here we used different cryo–electron microscopy approaches to determine structures of native and solubilized ribosome-Sec61-OST complexes. A molecular model for the catalytic OST subunit STT3A (staurosporine and temperature sensitive 3A) revealed how it is integrated into the OST and how STT3-paralog specificity for translocon-associated OST is achieved. The OST subunit DC2 was placed at the interface between Sec61 and STT3A, where it acts as a versatile module for recruitment of STT3A-containing OST to the ribosome-Sec61 complex. This detailed structural view on the molecular architecture of the cotranslational machinery for N-glycosylation provides the basis for a mechanistic understanding of glycoprotein biogenesis at the endoplasmic reticulum.

View Full Text