Structure of the nuclear exosome captured on a maturing preribosome

See allHide authors and affiliations

Science  13 Apr 2018:
Vol. 360, Issue 6385, pp. 219-222
DOI: 10.1126/science.aar5428

You are currently viewing the abstract.

View Full Text

Log in to view the full text

Log in through your institution

Log in through your institution

The RNA exosome captured in action

The RNA exosome, a major RNA degradation machine, processes ribosomal RNA (rRNA) precursors and is directly coupled to the protein synthesis machine, the ribosome. Using cryo–electron microscopy, Schuller et al. investigated the structure of the precursor large ribosomal subunit from yeast with unprocessed rRNA in complex with the RNA exosome. The structure captures a snapshot of two molecular machines transiently interacting and explains how the RNA exosome acts on an authentic physiological substrate and remodels the large subunit during ribosome maturation.

Science, this issue p. 219


The RNA exosome complex processes and degrades a wide range of transcripts, including ribosomal RNAs (rRNAs). We used cryo–electron microscopy to visualize the yeast nuclear exosome holocomplex captured on a precursor large ribosomal subunit (pre-60S) during 7S-to-5.8S rRNA processing. The cofactors of the nuclear exosome are sandwiched between the ribonuclease core complex (Exo-10) and the remodeled “foot” structure of the pre-60S particle, which harbors the 5.8S rRNA precursor. The exosome-associated helicase Mtr4 recognizes the preribosomal substrate by docking to specific sites on the 25S rRNA, captures the 3′ extension of the 5.8S rRNA, and channels it toward Exo-10. The structure elucidates how the exosome forms a structural and functional unit together with its massive pre-60S substrate to process rRNA during ribosome maturation.

View Full Text