Germinal center antibody mutation trajectories are determined by rapid self/foreign discrimination

See allHide authors and affiliations

Science  13 Apr 2018:
Vol. 360, Issue 6385, pp. 223-226
DOI: 10.1126/science.aao3859

You are currently viewing the abstract.

View Full Text

Log in to view the full text

Log in through your institution

Log in through your institution

Autoantibody redemption through rapid mutations

Antibodies distinguish foreign epitopes from closely related self-antigens by poorly understood mechanisms. In mice, Burnett et al. found that a proportion of B cells could cross-react with similar foreign and self-antigens (see the Perspective by Kara and Nussenzweig). Challenge with self-antigen resulted in anergy (i.e., a lack of immune response), which was reversed by exposure to high-density foreign antigen. Mutations that decreased self-affinity were rapidly selected for, whereas selection for epistatic mutations that enhanced foreign reactivity took longer. Self-reactivity, rather than being an impediment to immunization, resulted in higher affinities against a foreign immunogen.

Science, this issue p. 223; see also p. 152


Antibodies have the specificity to differentiate foreign antigens that mimic self antigens, but it remains unclear how such specificity is acquired. In a mouse model, we generated B cells displaying an antibody that cross-reacts with two related protein antigens expressed on self versus foreign cells. B cell anergy was imposed by self antigen but reversed upon challenge with high-density foreign antigen, leading to germinal center recruitment and antibody gene hypermutation. Single-cell analysis detected rapid selection for mutations that decrease self affinity and slower selection for epistatic mutations that specifically increase foreign affinity. Crystal structures revealed that these mutations exploited subtle topological differences to achieve 5000-fold preferential binding to foreign over self epitopes. Resolution of antigenic mimicry drove the optimal affinity maturation trajectory, highlighting the value of retaining self-reactive clones as substrates for protective antibody responses.

View Full Text