Research Article

MitoCPR—A surveillance pathway that protects mitochondria in response to protein import stress

See allHide authors and affiliations

Science  13 Apr 2018:
Vol. 360, Issue 6385, eaan4146
DOI: 10.1126/science.aan4146

You are currently viewing the abstract.

View Full Text

Log in to view the full text

Log in through your institution

Log in through your institution

The mitoCPR unclogs mitochondria

The import of proteins into mitochondria is essential for cell viability. How cells respond when mitochondrial protein import is impaired is poorly understood. Weidberg and Amon showed that upon mitochondrial import stress, yeast cells mounted a response known as the mitoCPR. mitoCPR was activated when mitochondrial protein import was impaired and unimported precursors accumulated on the organelle's surface. mitoCPR restored mitochondrial functions by clearing stalled proteins from the import channels. It did this by inducing expression of Cis1, which recruited the adenosine triphosphatase Msp1 to import channels to remove unimported precursors and target them for degradation by the proteasome.

Science, this issue p. eaan4146

Structured Abstract


Mitochondria provide cells with energy and numerous essential metabolites such as lipids, amino acids, iron sulfur clusters, and heme. All mitochondrial functions rely on import of proteins into the organelle because the mitochondrial proteome is almost exclusively encoded by nuclear genes. Given the central importance of mitochondria for cell viability, it is not surprising that cells mount a nuclear response when mitochondrial functions are compromised. These mitochondria-to-nucleus signaling pathways include the mtUPR (mitochondrial unfolded protein response), which triggers expression of mitochondrial chaperones when mitochondrial protein folding is defective, and the UPRam (unfolded protein response activated by mistargeting of proteins) and mPOS (mitochondrial precursor over-accumulation stress) pathways, which reduce translation and induce degradation of unimported proteins in the cytosol when mitochondrial import is impaired. Even though mitochondrial import is central to all mitochondrial functions, no response to protein import defects had been described that protects mitochondria during this stress.


To determine how cells respond to defects in mitochondrial protein import, we first developed a system in budding yeast with which to specifically inhibit this process. We found that overexpression of proteins that rely on a bipartite signal sequence for their mitochondrial localization inhibited mitochondrial import and led to the accumulation of mitochondrial precursors. Protease protection and carbonate extraction assays that were performed on isolated mitochondria revealed that these unimported proteins accumulated on the mitochondrial surface and in the import channel known as the translocase.


Having developed a system that allowed us to specifically inhibit mitochondrial protein import, we examined the cellular response to this defect. Transcriptome analysis of cells overexpressing bipartite signal–containing proteins identified a gene expression pattern related to the multi-drug resistance response. We termed this response mitochondrial compromised protein import response (mitoCPR). mitoCPR was triggered by protein import defects but not other mitochondrial deficiencies, such as respiratory failure, and was mediated by the transcription factor Pdr3. Our analyses further showed that mitoCPR was critical for the protection of mitochondria during import stress. Cells lacking PDR3 did not mount a mitoCPR during import stress and accumulated higher levels of unimported proteins on the organelle surface as compared with those of wild-type cells. Consequently, pdr3Δ cells exhibited decreased respiratory function and loss of mitochondrial DNA when mitochondrial import was restored. Our results also shed light on the mechanism by which mitoCPR protected mitochondria. Upon mitochondrial import stress, Pdr3 induced expression of Cis1. Coimmunoprecipitation analyses showed that Cis1 recruited the AAA+ adenosine triphosphatase Msp1 to the translocase by binding to the translocase receptor Tom70. There, the two proteins mediated the clearance and proteasomal degradation of proteins that failed to be imported into mitochondria.


We discovered a mitochondrial import surveillance mechanism in budding yeast. This surveillance mechanism, mitoCPR, is activated when mitochondrial import is stalled in order to induce the removal of mitochondrial proteins accumulating on the mitochondrial surface. Clearance of precursors is critical for maintaining mitochondrial functions during import stress. We propose that mitoCPR could be especially important when the import machinery is overwhelmed, as may occur in situations that require the rapid expansion of the mitochondrial compartment.

MitoCPR protects mitochondria during import stress.

(Left) Mitochondrial protein import deficiency leads to the accumulation of mitochondrial proteins on the organelle’s surface and in the translocases. (Right) Pdr3 induces CIS1 expression. Cis1 binds to the mitochondrial import receptor Tom70 and recruits Msp1 to mediate clearance of unimported precursors from the mitochondrial surface and their proteasomal degradation. This protects mitochondrial functions during import stress.



Mitochondrial functions are essential for cell viability and rely on protein import into the organelle. Various disease and stress conditions can lead to mitochondrial import defects. We found that inhibition of mitochondrial import in budding yeast activated a surveillance mechanism, mitoCPR, that improved mitochondrial import and protected mitochondria during import stress. mitoCPR induced expression of Cis1, which associated with the mitochondrial translocase to reduce the accumulation of mitochondrial precursor proteins at the mitochondrial translocase. Clearance of precursor proteins depended on the Cis1-interacting AAA+ adenosine triphosphatase Msp1 and the proteasome, suggesting that Cis1 facilitates degradation of unimported proteins. mitoCPR was required for maintaining mitochondrial functions when protein import was compromised, demonstrating the importance of mitoCPR in protecting the mitochondrial compartment.

View Full Text