Quantitative mass imaging of single biological macromolecules

See allHide authors and affiliations

Science  27 Apr 2018:
Vol. 360, Issue 6387, pp. 423-427
DOI: 10.1126/science.aar5839

You are currently viewing the abstract.

View Full Text

Log in to view the full text

Log in through your institution

Log in through your institution

Watching proteins' weight

Careful measurements of light scattering can provide information on individual macromolecules and complexes. Young et al. used a light-scattering approach for accurate mass determination of proteins as small as 20 kDa (see the Perspective by Lee and Klenerman). Movies of protein complex association and dissociation were analyzed to extract biophysical parameters from single molecules and assemblies without labeling. Using this approach, the authors determined in vitro kinetics of fibril and aggregate growth and association constants for a complex protein-glycoprotein assembly.

Science, this issue p. 423; see also p. 378


The cellular processes underpinning life are orchestrated by proteins and their interactions. The associated structural and dynamic heterogeneity, despite being key to function, poses a fundamental challenge to existing analytical and structural methodologies. We used interferometric scattering microscopy to quantify the mass of single biomolecules in solution with 2% sequence mass accuracy, up to 19-kilodalton resolution, and 1-kilodalton precision. We resolved oligomeric distributions at high dynamic range, detected small-molecule binding, and mass-imaged proteins with associated lipids and sugars. These capabilities enabled us to characterize the molecular dynamics of processes as diverse as glycoprotein cross-linking, amyloidogenic protein aggregation, and actin polymerization. Interferometric scattering mass spectrometry allows spatiotemporally resolved measurement of a broad range of biomolecular interactions, one molecule at a time.

View Full Text