Report

Multiplexed and portable nucleic acid detection platform with Cas13, Cas12a, and Csm6

See allHide authors and affiliations

Science  27 Apr 2018:
Vol. 360, Issue 6387, pp. 439-444
DOI: 10.1126/science.aaq0179

You are currently viewing the abstract.

View Full Text

Log in to view the full text

Log in through your institution

Log in through your institution

Taking CRISPR technology further

CRISPR techniques are allowing the development of technologies for nucleic acid detection (see the Perspective by Chertow). Taking advantages of the distinctive enzymatic properties of CRISPR enzymes, Gootenberg et al. developed an improved nucleic acid detection technology for multiplexed quantitative and highly sensitive detection, combined with lateral flow for visual readout. Myhrvold et al. added a sample preparation protocol to create a field-deployable viral diagnostic platform for rapid detection of specific strains of pathogens in clinical samples. Cas12a (also known as Cpf1), a type V CRISPR protein, cleaves double-stranded DNA and has been adapted for genome editing. Chen et al. discovered that Cas12a also processes single-stranded DNA threading activity. A technology platform based on this activity detected human papillomavirus in patient samples with high sensitivity.

Science, this issue p. 439, p. 444, p. 436; see also p. 381

Abstract

Rapid detection of nucleic acids is integral for clinical diagnostics and biotechnological applications. We recently developed a platform termed SHERLOCK (specific high-sensitivity enzymatic reporter unlocking) that combines isothermal preamplification with Cas13 to detect single molecules of RNA or DNA. Through characterization of CRISPR enzymology and application development, we report here four advances integrated into SHERLOCK version 2 (SHERLOCKv2) (i) four-channel single-reaction multiplexing with orthogonal CRISPR enzymes; (ii) quantitative measurement of input as low as 2 attomolar; (iii) 3.5-fold increase in signal sensitivity by combining Cas13 with Csm6, an auxiliary CRISPR-associated enzyme; and (iv) lateral-flow readout. SHERLOCKv2 can detect Dengue or Zika virus single-stranded RNA as well as mutations in patient liquid biopsy samples via lateral flow, highlighting its potential as a multiplexable, portable, rapid, and quantitative detection platform of nucleic acids.

View Full Text