You are currently viewing the abstract.
View Full TextLog in to view the full text
AAAS login provides access to Science for AAAS members, and access to other journals in the Science family to users who have purchased individual subscriptions.
More options
Download and print this article for your personal scholarly, research, and educational use.
Buy a single issue of Science for just $15 USD.
Big mamas matter for fish
The theoretical relationship between reproduction and body size has assumed that total mass relates directly to fecundity, regardless of the number of individuals involved. This assumption leads to fisheries management practices that suggest that one large female fish can be replaced by several smaller females. However, this assumption is incorrect. Barneche et al. show that larger females are far more productive than the same weight's worth of smaller females. Management practices that ignore the value of large females could contribute to unexplained declines seen in some fish stocks.
Science, this issue p. 642
Abstract
Body size determines total reproductive-energy output. Most theories assume reproductive output is a fixed proportion of size, with respect to mass, but formal macroecological tests are lacking. Management based on that assumption risks underestimating the contribution of larger mothers to replenishment, hindering sustainable harvesting. We test this assumption in marine fishes with a phylogenetically controlled meta-analysis of the intraspecific mass scaling of reproductive-energy output. We show that larger mothers reproduce disproportionately more than smaller mothers in not only fecundity but also total reproductive energy. Our results reset much of the theory on how reproduction scales with size and suggest that larger mothers contribute disproportionately to population replenishment. Global change and overharvesting cause fish sizes to decline; our results provide quantitative estimates of how these declines affect fisheries and ecosystem-level productivity.
This is an article distributed under the terms of the Science Journals Default License.