Review

Genomic insights into the emergence and spread of antimicrobial-resistant bacterial pathogens

See allHide authors and affiliations

Science  18 May 2018:
Vol. 360, Issue 6390, pp. 733-738
DOI: 10.1126/science.aar3777

You are currently viewing the abstract.

View Full Text

Abstract

Whole-genome sequencing (WGS) has been vital for revealing the rapid temporal and spatial evolution of antimicrobial resistance (AMR) in bacterial pathogens. Some antimicrobial-resistant pathogens have outpaced us, with untreatable infections appearing in hospitals and the community. However, WGS has additionally provided us with enough knowledge to initiate countermeasures. Although we cannot stop bacterial adaptation, the predictability of many evolutionary processes in AMR bacteria offers us an opportunity to channel them using new control strategies. Furthermore, by using WGS for coordinating surveillance and to create a more fundamental understanding of the outcome of antimicrobial treatment and AMR mechanisms, we can use current and future antimicrobials more effectively and aim to extend their longevity.

http://creativecommons.org/licenses/by/4.0/

This is an open-access article distributed under the terms of the Creative Commons Attribution license, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

View Full Text