Building one molecule from a reservoir of two atoms

See allHide authors and affiliations

Science  25 May 2018:
Vol. 360, Issue 6391, pp. 900-903
DOI: 10.1126/science.aar7797

You are currently viewing the abstract.

View Full Text

Log in to view the full text

Log in through your institution

Log in through your institution

Lighting the way to molecules, one by one

When chemists run reactions, what they are really doing is mixing up an enormous number of reacting partners and then hoping that they collide productively. It is possible to manipulate atoms more deliberately with a scanning tunneling microscope tip, but the process is then confined to a surface. Liu et al. directly manipulated individual atoms with light to form single molecules in isolation (see the Perspective by Narevicius). They used optical tweezers of two different colors to selectively steer ultracold sodium (Na) and cesium (Cs) atoms together. A subsequent optical excitation formed NaCs.

Science, this issue p. 900; see also p. 855


Chemical reactions typically proceed via stochastic encounters between reactants. Going beyond this paradigm, we combined exactly two atoms in a single, controlled reaction. The experimental apparatus traps two individual laser-cooled atoms [one sodium (Na) and one cesium (Cs)] in separate optical tweezers and then merges them into one optical dipole trap. Subsequently, photoassociation forms an excited-state NaCs molecule. The discovery of previously unseen resonances near the molecular dissociation threshold and measurement of collision rates are enabled by the tightly trapped ultracold sample of atoms. As laser-cooling and trapping capabilities are extended to more elements, the technique will enable the study of more diverse, and eventually more complex, molecules in an isolated environment, as well as synthesis of designer molecules for qubits.

View Full Text