Report

Anomalously low dielectric constant of confined water

See allHide authors and affiliations

Science  22 Jun 2018:
Vol. 360, Issue 6395, pp. 1339-1342
DOI: 10.1126/science.aat4191

You are currently viewing the abstract.

View Full Text

Log in to view the full text

Log in through your institution

Log in through your institution

Water's surface dielectric

Theoretical studies predict that the inhibition of rotational motion of water near a solid surface will decrease its local dielectric constant. Fumagalli et al. fabricated thin channels in insulating hexagonal boron nitride on top of conducting graphene layers (see the Perspective by Kalinin). The channels, which varied in height from 1 to 300 nanometers, were filled with water and capped with a boron nitride layer. Modeling of the capacitance measurements made with an atomic force microscope tip revealed a surface-layer dielectric constant of 2, compared with the bulk value of 80 for water.

Science, this issue p. 1339; see also p. 1302

Abstract

The dielectric constant ε of interfacial water has been predicted to be smaller than that of bulk water (ε ≈ 80) because the rotational freedom of water dipoles is expected to decrease near surfaces, yet experimental evidence is lacking. We report local capacitance measurements for water confined between two atomically flat walls separated by various distances down to 1 nanometer. Our experiments reveal the presence of an interfacial layer with vanishingly small polarization such that its out-of-plane ε is only ~2. The electrically dead layer is found to be two to three molecules thick. These results provide much-needed feedback for theories describing water-mediated surface interactions and the behavior of interfacial water, and show a way to investigate the dielectric properties of other fluids and solids under extreme confinement.

View Full Text