Research Article

Second Chern number of a quantum-simulated non-Abelian Yang monopole

See allHide authors and affiliations

Science  29 Jun 2018:
Vol. 360, Issue 6396, pp. 1429-1434
DOI: 10.1126/science.aam9031

You are currently viewing the abstract.

View Full Text

Log in to view the full text

Log in through your institution

Log in through your institution

Going beyond the first Chern number

Topological properties of physical systems are reflected in so-called Chern numbers: A nonzero Chern number typically means that a system is topologically nontrivial. Sugawa et al. engineered a cold atom system with a nonzero second Chern number, in contrast to condensed matter physics, where only the first Chern number is usually invoked. The exotic topology relates to the emergence of a type of magnetic monopole called the Yang monopole (known from theoretical high-energy physics) in a five-dimensional space of internal degrees of freedom in a rubidium Bose-Einstein condensate. The results illustrate the potential of cold atoms physics to simulate high-energy phenomena.

Science, this issue p. 1429

Abstract

Topological order is often quantified in terms of Chern numbers, each of which classifies a topological singularity. Here, inspired by concepts from high-energy physics, we use quantum simulation based on the spin degrees of freedom of atomic Bose-Einstein condensates to characterize a singularity present in five-dimensional non-Abelian gauge theories—a Yang monopole. We quantify the monopole in terms of Chern numbers measured on enclosing manifolds: Whereas the well-known first Chern number vanishes, the second Chern number does not. By displacing the manifold, we induce and observe a topological transition, where the topology of the manifold changes to a trivial state.

View Full Text