Report

Electrofluorochromism at the single-molecule level

See allHide authors and affiliations

Science  20 Jul 2018:
Vol. 361, Issue 6399, pp. 251-255
DOI: 10.1126/science.aat1603

You are currently viewing the abstract.

View Full Text

Log in to view the full text

Log in through your institution

Log in through your institution

Changing emission with charge states

The fluorescence of electrochromic molecules changes with their charge state. Doppagne et al. studied the optical emission of single zinc-phthalocyanine molecules excited by electron injection from a scanning tunneling microscope tip. The molecules were adsorbed on salt layers grown on a gold surface, so that the cationic and neutral molecules could both be observed. The primary emission shifted to lower energy for the cation, and, in addition, vibrational side bands were observed.

Science, this issue p. 251

Abstract

The interplay between the oxidation state and the optical properties of molecules is important for applications in displays, sensors, and molecular-based memories. The fundamental mechanisms occurring at the level of a single molecule have been difficult to probe. We used a scanning tunneling microscope (STM) to characterize and control the fluorescence of a single zinc-phthalocyanine radical cation adsorbed on a sodium chloride–covered gold (111) sample. The neutral and oxidized states of the molecule were identified on the basis of their fluorescence spectra, which revealed very different emission energies and vibronic fingerprints. The emission of the charged molecule was controlled by tuning the thickness of the insulator and the plasmons localized at the apex of the STM tip. In addition, subnanometric variations of the tip position were used to investigate the charging and electroluminescence mechanisms.

View Full Text