VHL substrate transcription factor ZHX2 as an oncogenic driver in clear cell renal cell carcinoma

See allHide authors and affiliations

Science  20 Jul 2018:
Vol. 361, Issue 6399, pp. 290-295
DOI: 10.1126/science.aap8411

You are currently viewing the abstract.

View Full Text

Log in to view the full text

Log in through your institution

Log in through your institution

Mechanistic insights into kidney cancer

Many clear cell renal cell carcinomas (ccRCCs) have alterations to the gene encoding the von Hippel-Lindau protein (VHL). VHL is a ubiquitin ligase that degrades target proteins when they are prolyl-hydroxylated. Zhang et al. performed a genome-wide search for VHL target (see the Perspective by Sanchez and Simon). They identified ZHX2, a protein with structural motifs that indicate DNA binding. ZHX2 has been implicated in tumor suppression. Loss of ZHX2 inhibited signaling through the transcription factor NF-κB, and ZHX2 bound to many NF-κB target genes. Depletion of ZHX2 slowed growth of ccRCC cells in vitro and in a mouse model.

Science, this issue p. 290; see also p. 226


Inactivation of the von Hippel-Lindau (VHL) E3 ubiquitin ligase protein is a hallmark of clear cell renal cell carcinoma (ccRCC). Identifying how pathways affected by VHL loss contribute to ccRCC remains challenging. We used a genome-wide in vitro expression strategy to identify proteins that bind VHL when hydroxylated. Zinc fingers and homeoboxes 2 (ZHX2) was found as a VHL target, and its hydroxylation allowed VHL to regulate its protein stability. Tumor cells from ccRCC patients with VHL loss-of-function mutations usually had increased abundance and nuclear localization of ZHX2. Functionally, depletion of ZHX2 inhibited VHL-deficient ccRCC cell growth in vitro and in vivo. Mechanistically, integrated chromatin immunoprecipitation sequencing and microarray analysis showed that ZHX2 promoted nuclear factor κB activation. These studies reveal ZHX2 as a potential therapeutic target for ccRCC.

View Full Text