You are currently viewing the abstract.
View Full TextLog in to view the full text
AAAS login provides access to Science for AAAS members, and access to other journals in the Science family to users who have purchased individual subscriptions.
More options
Download and print this article for your personal scholarly, research, and educational use.
Buy a single issue of Science for just $15 USD.
The benefits of being well fed
In eusocial insects, the vast majority of individuals sacrifice their reproductive potential to support the reproductive queen. Although this system has evolved repeatedly, there is still much debate surrounding its origin. Working with seven different species of ants, Chandra et al. used a transcriptomic approach to show that a single gene is consistently up-regulated in queens. This gene seems to confer reproductive status through integration with increased nutrition. In a clonal ant, larval signals disrupt this gene up-regulation, destabilizing the division of reproductive labor. Increasing levels of the associated peptide override these larval signals and establish eusociality.
Science, this issue p. 398
Abstract
Queens and workers of eusocial Hymenoptera are considered homologous to the reproductive and brood care phases of an ancestral subsocial life cycle. However, the molecular mechanisms underlying the evolution of reproductive division of labor remain obscure. Using a brain transcriptomics screen, we identified a single gene, insulin-like peptide 2 (ilp2), which is always up-regulated in ant reproductives, likely because they are better nourished than their nonreproductive nestmates. In clonal raider ants (Ooceraea biroi), larval signals inhibit adult reproduction by suppressing ilp2, thus producing a colony reproductive cycle reminiscent of ancestral subsociality. However, increasing ILP2 peptide levels overrides larval suppression, thereby breaking the colony cycle and inducing a stable division of labor. These findings suggest a simple model for the origin of ant eusociality via nutritionally determined reproductive asymmetries potentially amplified by larval signals.
This is an article distributed under the terms of the Science Journals Default License.