Report

Large-scale ocean deoxygenation during the Paleocene-Eocene Thermal Maximum

See allHide authors and affiliations

Science  24 Aug 2018:
Vol. 361, Issue 6404, pp. 804-806
DOI: 10.1126/science.aar8658

You are currently viewing the abstract.

View Full Text

Log in to view the full text

Log in through your institution

Log in through your institution

Fishin' gone?

Because gas solubility decreases as temperatures increase, global warming is likely to cause oxygen loss from the oceans. This could have a detrimental impact on fish populations, the fishing industry, and global food availability. Have such impacts occurred before? Yao et al. report sulfur isotopic data from the Paleocene-Eocene Thermal Maximum, an interval around 55 million years ago when atmospheric carbon dioxide concentrations and global temperatures were also high. They found widespread anoxia and resulting high concentrations of hydrogen sulfide, which is toxic to marine organisms. Similar effects could have severe negative effects on ocean ecosystems.

Science, this issue p. 804

Abstract

The consequences of global warming for fisheries are not well understood, but the geological record demonstrates that carbon cycle perturbations are frequently associated with ocean deoxygenation. Of particular interest is the Paleocene-Eocene Thermal Maximum (PETM), where the carbon dioxide input into the atmosphere was similar to the IPCC RCP8.5 emission scenario. Here we present sulfur-isotope data that record a positive 1 per mil excursion during the PETM. Modeling suggests that large parts of the ocean must have become sulfidic. The toxicity of hydrogen sulfide will render two of the largest and least explored ecosystems on Earth, the mesopelagic and bathypelagic zones, uninhabitable by multicellular organisms. This will affect many marine species whose ecozones stretch into the deep ocean.

View Full Text