Report

Glutamate triggers long-distance, calcium-based plant defense signaling

See allHide authors and affiliations

Science  14 Sep 2018:
Vol. 361, Issue 6407, pp. 1112-1115
DOI: 10.1126/science.aat7744

You are currently viewing the abstract.

View Full Text

Log in to view the full text

Log in through your institution

Log in through your institution

Rapid, long-distance signaling in plants

A plant injured on one leaf by a nibbling insect can alert its other leaves to begin anticipatory defense responses. Working in the model plant Arabidopsis, Toyota et al. show that this systemic signal begins with the release of glutamate, which is perceived by glutamate receptor–like ion channels (see the Perspective by Muday and Brown-Harding). The ion channels then set off a cascade of changes in calcium ion concentration that propagate through the phloem vasculature and through intercellular channels called plasmodesmata. This glutamate-based long-distance signaling is rapid: Within minutes, an undamaged leaf can respond to the fate of a distant leaf.

Science, this issue p. 1112; see also p. 1068

Abstract

Animals require rapid, long-range molecular signaling networks to integrate sensing and response throughout their bodies. The amino acid glutamate acts as an excitatory neurotransmitter in the vertebrate central nervous system, facilitating long-range information exchange via activation of glutamate receptor channels. Similarly, plants sense local signals, such as herbivore attack, and transmit this information throughout the plant body to rapidly activate defense responses in undamaged parts. Here we show that glutamate is a wound signal in plants. Ion channels of the GLUTAMATE RECEPTOR–LIKE family act as sensors that convert this signal into an increase in intracellular calcium ion concentration that propagates to distant organs, where defense responses are then induced.

View Full Text