Report

A continental system for forecasting bird migration

See allHide authors and affiliations

Science  14 Sep 2018:
Vol. 361, Issue 6407, pp. 1115-1118
DOI: 10.1126/science.aat7526

You are currently viewing the abstract.

View Full Text

Log in to view the full text

Log in through your institution

Log in through your institution

Bird forecast

Billions of birds migrate across the globe each year, and, in our modern environment, many collide with human-made structures and vehicles. The ability to predict peak timing and locations of migratory events could greatly improve our ability to reduce such collisions. Van Doren and Horton used radar and atmospheric-condition data to predict the peaks and flows of migrating birds across North America. Their models predicted, with high accuracy, patterns of bird migration at altitudes between 0 and 3000 meters and as far as 7 days in advance, a time span that will allow for planning and preparation around these important events.

Science, this issue p. 1115

Abstract

Billions of animals cross the globe each year during seasonal migrations, but efforts to monitor them are hampered by the unpredictability of their movements. We developed a bird migration forecast system at a continental scale by leveraging 23 years of spring observations to identify associations between atmospheric conditions and bird migration intensity. Our models explained up to 81% of variation in migration intensity across the United States at altitudes of 0 to 3000 meters, and performance remained high in forecasting events 1 to 7 days in advance (62 to 76% of variation was explained). Avian migratory movements across the United States likely exceed 500 million individuals per night during peak passage. Bird migration forecasts will reduce collisions with buildings, airplanes, and wind turbines; inform a variety of monitoring efforts; and engage the public.

View Full Text