You are currently viewing the abstract.
View Full TextLog in to view the full text
AAAS login provides access to Science for AAAS members, and access to other journals in the Science family to users who have purchased individual subscriptions.
More options
Download and print this article for your personal scholarly, research, and educational use.
Buy a single issue of Science for just $15 USD.
ER-SURF protein import into mitochondria
Eukaryotic cells contain membrane-bound organelles, defined by distinct protein compositions. Almost all cellular proteins are synthesized in the cytosol, and thus, organelle-resident proteins must be directed to their appropriate location after synthesis. Working in yeast, Hansen et al. identified a protein-targeting paradigm termed ER-SURF, in which the membrane expanse of the endoplasmic reticulum (ER) serves as a “capture net” for mitochondrial proteins. This process productively redirected mitochondrial precursor proteins for efficient mitochondrial import. Thus, two distinct organelles, once thought to be mutually exclusive protein destinations, can cooperate during protein targeting.
Science, this issue p. 1118
Abstract
The majority of organellar proteins are translated on cytosolic ribosomes and must be sorted correctly to function. Targeting routes have been identified for organelles such as peroxisomes and the endoplasmic reticulum (ER). However, little is known about the initial steps of targeting of mitochondrial proteins. In this study, we used a genome-wide screen in yeast and identified factors critical for the intracellular sorting of the mitochondrial inner membrane protein Oxa1. The screen uncovered an unexpected path, termed ER-SURF, for targeting of mitochondrial membrane proteins. This pathway retrieves mitochondrial proteins from the ER surface and reroutes them to mitochondria with the aid of the ER-localized chaperone Djp1. Hence, cells use the expanse of the ER surfaces as a fail-safe to maximize productive mitochondrial protein targeting.
This is an article distributed under the terms of the Science Journals Default License.