Report

Systematic discovery of natural CRISPR-Cas12a inhibitors

See allHide authors and affiliations

Science  12 Oct 2018:
Vol. 362, Issue 6411, pp. 236-239
DOI: 10.1126/science.aau5138

You are currently viewing the abstract.

View Full Text

Log in to view the full text

Log in through your institution

Log in through your institution

Cas12 inhibitors join the anti-CRISPR family

Bacteria and their phages continually coevolve in a molecular arms race. For example, phages use anti-CRISPR proteins to inhibit the bacterial type I and II CRISPR systems (see the Perspective by Koonin and Makarova). Watters et al. and Marino et al. used bioinformatic and experimental approaches to identify inhibitors of type V CRISPR-Cas12a. Cas12a has been successfully engineered for gene editing and nucleic acid detection. Some of the anti-Cas12a proteins identified in these studies had broad-spectrum inhibitory effects on Cas12a orthologs and could block Cas12a-mediated genome editing in human cells.

Science, this issue p. 236, p. 240; see also p. 156

Abstract

Cas12a (Cpf1) is a CRISPR-associated nuclease with broad utility for synthetic genome engineering, agricultural genomics, and biomedical applications. Although bacteria harboring CRISPR-Cas9 or CRISPR-Cas3 adaptive immune systems sometimes acquire mobile genetic elements encoding anti-CRISPR proteins that inhibit Cas9, Cas3, or the DNA-binding Cascade complex, no such inhibitors have been found for CRISPR-Cas12a. Here we use a comprehensive bioinformatic and experimental screening approach to identify three different inhibitors that block or diminish CRISPR-Cas12a–mediated genome editing in human cells. We also find a widespread connection between CRISPR self-targeting and inhibitor prevalence in prokaryotic genomes, suggesting a straightforward path to the discovery of many more anti-CRISPRs from the microbial world.

View Full Text