Report

Ultrafast disordering of vanadium dimers in photoexcited VO2

See allHide authors and affiliations

Science  02 Nov 2018:
Vol. 362, Issue 6414, pp. 572-576
DOI: 10.1126/science.aau3873

You are currently viewing the abstract.

View Full Text

Log in to view the full text

Log in through your institution

Log in through your institution

Snapshots of a phase transition

Time-resolved x-ray scattering can be used to investigate the dynamics of materials during the switch from one structural phase to another. So far, methods provide an ensemble average and may miss crucial aspects of the detailed mechanisms at play. Wall et al. used a total-scattering technique to probe the dynamics of the ultrafast insulator-to-metal transition of vanadium dioxide (VO2) (see the Perspective by Cavalleri). Femtosecond x-ray pulses provide access to the time- and momentum-resolved dynamics of the structural transition. Their results show that the photoinduced transition is of the order-disorder type, driven by an ultrafast change in the lattice potential that suddenly unlocks the vanadium atoms and yields large-amplitude uncorrelated motions, rather than occurring through a coherent displacive mechanism.

Science, this issue p. 572; see also p. 525

Abstract

Many ultrafast solid phase transitions are treated as chemical reactions that transform the structures between two different unit cells along a reaction coordinate, but this neglects the role of disorder. Although ultrafast diffraction provides insights into atomic dynamics during such transformations, diffraction alone probes an averaged unit cell and is less sensitive to randomness in the transition pathway. Using total scattering of femtosecond x-ray pulses, we show that atomic disordering in photoexcited vanadium dioxide (VO2) is central to the transition mechanism and that, after photoexcitation, the system explores a large volume of phase space on a time scale comparable to that of a single phonon oscillation. These results overturn the current understanding of an archetypal ultrafast phase transition and provide new microscopic insights into rapid evolution toward equilibrium in photoexcited matter.

View Full Text