Report

Gate-induced superconductivity in a monolayer topological insulator

See allHide authors and affiliations

Science  23 Nov 2018:
Vol. 362, Issue 6417, pp. 922-925
DOI: 10.1126/science.aar4426

You are currently viewing the abstract.

View Full Text

Log in to view the full text

Log in through your institution

Log in through your institution

A monolayer of many talents

Superconductors with a topologically nontrivial band structure have been predicted to exhibit exotic properties. However, such materials are few and far between. Now, two groups show that the monolayer of the material tungsten ditelluride (WTe2)—already known to be a two-dimensional topological insulator—can also go superconducting. Fatemi et al. and Sajadi et al. varied the carrier density in the monolayer by applying a gate voltage and observed a transition from a topological to a superconducting phase. The findings may lead to the fabrication of devices in which local gating enables topological and superconducting phases to exist in the same material.

Science, this issue p. 926, p. 922

Abstract

The layered semimetal tungsten ditelluride (WTe2) has recently been found to be a two-dimensional topological insulator (2D TI) when thinned down to a single monolayer, with conducting helical edge channels. We found that intrinsic superconductivity can be induced in this monolayer 2D TI by mild electrostatic doping at temperatures below 1 kelvin. The 2D TI–superconductor transition can be driven by applying a small gate voltage. This discovery offers possibilities for gate-controlled devices combining superconductivity and nontrivial topological properties, and could provide a basis for quantum information schemes based on topological protection.

View Full Text