You are currently viewing the abstract.
View Full TextLog in to view the full text
AAAS login provides access to Science for AAAS members, and access to other journals in the Science family to users who have purchased individual subscriptions.
More options
Download and print this article for your personal scholarly, research, and educational use.
Buy a single issue of Science for just $15 USD.
One program to rule them all
Computers can beat humans at increasingly complex games, including chess and Go. However, these programs are typically constructed for a particular game, exploiting its properties, such as the symmetries of the board on which it is played. Silver et al. developed a program called AlphaZero, which taught itself to play Go, chess, and shogi (a Japanese version of chess) (see the Editorial, and the Perspective by Campbell). AlphaZero managed to beat state-of-the-art programs specializing in these three games. The ability of AlphaZero to adapt to various game rules is a notable step toward achieving a general game-playing system.
Abstract
The game of chess is the longest-studied domain in the history of artificial intelligence. The strongest programs are based on a combination of sophisticated search techniques, domain-specific adaptations, and handcrafted evaluation functions that have been refined by human experts over several decades. By contrast, the AlphaGo Zero program recently achieved superhuman performance in the game of Go by reinforcement learning from self-play. In this paper, we generalize this approach into a single AlphaZero algorithm that can achieve superhuman performance in many challenging games. Starting from random play and given no domain knowledge except the game rules, AlphaZero convincingly defeated a world champion program in the games of chess and shogi (Japanese chess), as well as Go.
This is an article distributed under the terms of the Science Journals Default License.











