You are currently viewing the abstract.
View Full TextLog in to view the full text
AAAS login provides access to Science for AAAS members, and access to other journals in the Science family to users who have purchased individual subscriptions.
More options
Download and print this article for your personal scholarly, research, and educational use.
Buy a single issue of Science for just $15 USD.
Stability through symmetry
A common route to get more light out of a laser system is to couple multiple lasers to form an array. However, instabilities owing to cross-talk and interference between different modes of individual cavities is generally detrimental to performance and could ultimately be damaging to the laser cavities. Hokmabadi et al. applied notions derived from supersymmetry, a theory developed in high-energy physics to describe the make-up and properties of particles, to design a stable array of semiconductor lasers (see the Perspective by Kottos). Based on symmetry arguments, the method is scalable and could provide a practical platform to design and develop complex photonic systems.
Abstract
Scaling up the radiance of coupled laser arrays has been a long-standing challenge in photonics. In this study, we demonstrate that notions from supersymmetry—a theoretical framework developed in high-energy physics—can be strategically used in optics to address this problem. In this regard, a supersymmetric laser array is realized that is capable of emitting exclusively in its fundamental transverse mode in a stable manner. Our results not only pave the way toward devising new schemes for scaling up radiance in integrated lasers, but also, on a more fundamental level, could shed light on the intriguing synergy between non-Hermiticity and supersymmetry.
This is an article distributed under the terms of the Science Journals Default License.