Report

Bidirectional Control of Social Hierarchy by Synaptic Efficacy in Medial Prefrontal Cortex

+ See all authors and affiliations

Science  29 Sep 2011:
1209951
DOI: 10.1126/science.1209951

Abstract

Dominance hierarchy profoundly impacts animals’ survival, health, and reproductive success, but its neural circuit mechanism is virtually unknown. We found that dominance ranking in mice is transitive, relatively stable, and highly correlates among multiple behavior measures. Recording from layer V pyramidal neurons of the medial prefrontal cortex (mPFC) showed higher strength of excitatory synaptic inputs in mice with higher ranking, as compared with their subordinate cage mates. Furthermore, molecular manipulations that resulted in an increase and decrease in the synaptic efficacy in dorsal mPFC neurons caused an upward and downward movement in the social rank, respectively. These results provide direct evidence for mPFC’s involvement in social hierarchy and suggest that social rank is plastic and can be tuned by altering synaptic strength in mPFC pyramidal cells.