The Role of Surface Oxygen in the Growth of Large Single-Crystal Graphene on Copper

See allHide authors and affiliations

Science  24 Oct 2013:
DOI: 10.1126/science.1243879

You are currently viewing the abstract.

View Full Text


The growth of high-quality single crystals of graphene by chemical vapor deposition on copper (Cu) has not always achieved control over domain size and morphology, and the results vary from lab to lab under presumably similar growth conditions. We discovered that oxygen on the Cu surface substantially decreased the graphene nucleation density by passivating Cu surface active sites. Control of surface oxygen enabled repeatable growth of centimeter-scale single-crystal graphene domains. Oxygen also accelerated graphene domain growth and shifted the growth kinetics from edge-attachment–limited to diffusion-limited. Correspondingly, the compact graphene domain shapes became dendritic. The electrical quality of the graphene films was equivalent to mechanically exfoliated graphene, in spite of being grown in the presence of oxygen.

View Full Text