Research Article

Specific and Nonhepatotoxic Degradation of Nuclear Hepatitis B Virus cccDNA

Science  20 Feb 2014:

DOI: 10.1126/science.1243462

You are currently viewing the abstract.

View Full Text

Via your Institution

Log in through your institution

Log in through your institution


Abstract

Current antivirals can control but not eliminate hepatitis-B-virus (HBV), because HBV establishes a stable nuclear cccDNA. Interferon-α treatment can clear HBV but is limited by systemic side effects. Here, we describe how interferon-α can induce specific degradation of the nuclear viral DNA without hepatotoxicity and propose lymphotoxin-β-receptor activation as a therapeutic alternative. Interferon-α and lymphotoxin-β-receptor activation up-regulated APOBEC3A and 3B cytidine-deaminases, respectively, in HBV-infected cells, primary hepatocytes and human liver-needle biopsies. HBV-core protein mediated the interaction with nuclear cccDNA resulting in cytidine-deamination, apurinic/apyrimidinic site formation and finally cccDNA degradation that prevented HBV-reactivation. Genomic DNA was not affected. Thus, inducing nuclear deaminases - e.g., by lymphotoxin-β-receptor activation - allows development of new therapeutics that combined with existing antivirals may cure hepatitis B.

View Full Text

Cited By...