Research Article

Specific and Nonhepatotoxic Degradation of Nuclear Hepatitis B Virus cccDNA

+ See all authors and affiliations

Science  20 Feb 2014:
DOI: 10.1126/science.1243462

You are currently viewing the abstract.

View Full Text


Current antivirals can control but not eliminate hepatitis-B-virus (HBV), because HBV establishes a stable nuclear cccDNA. Interferon-α treatment can clear HBV but is limited by systemic side effects. Here, we describe how interferon-α can induce specific degradation of the nuclear viral DNA without hepatotoxicity and propose lymphotoxin-β-receptor activation as a therapeutic alternative. Interferon-α and lymphotoxin-β-receptor activation up-regulated APOBEC3A and 3B cytidine-deaminases, respectively, in HBV-infected cells, primary hepatocytes and human liver-needle biopsies. HBV-core protein mediated the interaction with nuclear cccDNA resulting in cytidine-deamination, apurinic/apyrimidinic site formation and finally cccDNA degradation that prevented HBV-reactivation. Genomic DNA was not affected. Thus, inducing nuclear deaminases - e.g., by lymphotoxin-β-receptor activation - allows development of new therapeutics that combined with existing antivirals may cure hepatitis B.

View Full Text