A Bacterial Tyrosine Phosphatase Inhibits Plant Pattern Recognition Receptor Activation

+ See all authors and affiliations

Science  13 Mar 2014:
DOI: 10.1126/science.1248849

You are currently viewing the abstract.

View Full Text


Innate immunity relies on the perception of pathogen-associated molecular patterns (PAMPs) by pattern-recognition receptors (PRRs) located on the host cell’s surface. Many plant PRRs are kinases. Here, we report that the Arabidopsis receptor kinase EF-TU RECEPTOR EFR, which perceives the elf18 peptide derived from bacterial elongation factor Tu, is activated upon ligand binding by phosphorylation on its tyrosine residues. Phosphorylation of a single tyrosine residue, Y836, is required for activation of EFR and downstream immunity to the phytopathogenic bacterium Pseudomonas syringae. A tyrosine phosphatase, HopAO1, secreted by P. syringae, reduces EFR phosphorylation and derails subsequent immune responses. Thus host and pathogen battle to take control of PRR tyrosine phosphorylation used to initiate anti-bacterial immunity.

View Full Text

Related Content