ReportStructural Biology

Structures of the CRISPR-Cmr complex reveal mode of RNA target positioning

See allHide authors and affiliations

Science  02 Apr 2015:
aaa4535
DOI: 10.1126/science.aaa4535

You are currently viewing the abstract.

View Full Text

Abstract

Adaptive immunity in bacteria involves RNA-guided surveillance complexes that use CRISPR (clustered regularly interspaced short palindromic repeats)-associated (Cas) proteins together with CRISPR RNAs (crRNAs) to target invasive nucleic acids for degradation. While Type I and Type II CRISPR-Cas surveillance complexes target double-stranded DNA, Type III complexes target single-stranded RNA. Near-atomic resolution cryo-electron microscopy (cryo-EM) reconstructions of native Type III Cmr (CRISPR RAMP module) complexes in the absence and presence of target RNA reveal a helical protein arrangement that positions the crRNA for substrate binding. Thumb-like β-hairpins intercalate between segments of duplexed crRNA:target RNA to facilitate cleavage of the target at 6-nt intervals. The Cmr complex is architecturally similar to the Type I CRISPR-Cascade complex, suggesting divergent evolution of these immune systems from a common ancestor.

View Full Text