Macroscale superlubricity enabled by graphene nanoscroll formation

+ See all authors and affiliations

Science  14 May 2015:
DOI: 10.1126/science.1262024

You are currently viewing the abstract.

View Full Text


Friction and wear remain as the primary modes of mechanical energy dissipation in moving mechanical assemblies, thus it is desirable to minimize friction in a number of applications. We demonstrate that superlubricity can be realized at engineering scale when graphene is utilized in combination with nanodiamond particles and diamond-like carbon (DLC). Macroscopic superlubricity originates because graphene patches at a sliding interface wrap around nanodiamonds to form nanoscrolls with reduced contact area that slide against the DLC surface, achieving an incommensurate contact and significantly reduced coefficient of friction (~0.004). Atomistic simulations elucidate the overall mechanism and mesoscopic link bridging the nanoscale mechanics and macroscopic experimental observations.

View Full Text