Cell nonautonomous activation of flavin-containing monooxygenase promotes longevity and health span

See allHide authors and affiliations

Science  19 Nov 2015:
DOI: 10.1126/science.aac9257

You are currently viewing the abstract.

View Full Text


Stabilization of the hypoxia-inducible factor 1 (HIF-1) increases life span and health span in nematodes through an unknown mechanism. We report that neuronal stabilization of HIF-1 mediates these effects in C. elegans through a cell nonautonomous signal to the intestine, which results in activation of the xenobiotic detoxification enzyme flavin-containing monooxygenase-2 (FMO-2). This prolongevity signal requires the serotonin biosynthetic enzyme TPH-1 in neurons and the serotonin receptor SER-7 in the intestine. Intestinal FMO-2 is also activated by dietary restriction (DR) and is necessary for DR-mediated life-span extension, which suggests that this enzyme represents a point of convergence for two distinct longevity pathways. FMOs are conserved in eukaryotes and induced by multiple life span–extending interventions in mice, which suggests that these enzymes may play a critical role in promoting health and longevity across phyla.

View Full Text