Structural and molecular basis for Ebola virus neutralization by protective human antibodies

Science  25 Feb 2016:

DOI: 10.1126/science.aad6117

You are currently viewing the abstract.

View Full Text


Ebola virus causes hemorrhagic fever with a high mortality rate and for which there is no approved therapy. Two human monoclonal antibodies, mAb100 and mAb114, in combination, protect nonhuman primates against all signs of Ebola virus disease, including viremia. Here, we demonstrate that mAb100 recognizes the base of the Ebola virus glycoprotein (GP) trimer, occludes access to the cathepsin-cleavage loop, and prevents the proteolytic cleavage of GP that is required for virus entry. We show that mAb114 interacts with the glycan cap and inner chalice of GP, remains associated following proteolytic removal of the glycan cap, and inhibits binding of cleaved GP to its receptor. These results define the basis of neutralization for two protective antibodies and may facilitate development of therapies and vaccines.

View Full Text