Research ArticlesCANCER

A major chromatin regulator determines resistance of tumor cells to T cell–mediated killing

See allHide authors and affiliations

Science  04 Jan 2018:
eaao1710
DOI: 10.1126/science.aao1710

You are currently viewing the abstract.

View Full Text

Log in to view the full text

Log in through your institution

Log in through your institution

Abstract

Many human cancers are resistant to immunotherapy for reasons that are poorly understood. We used a genome-scale CRISPR/Cas9 screen to identify mechanisms of tumor cell resistance to killing by cytotoxic T cells, the central effectors of anti-tumor immunity. Inactivation of >100 genes sensitized mouse B16F10 melanoma cells to killing by T cells, including Pbrm1, Arid2 and Brd7, which encode components of the PBAF form of the SWI/SNF chromatin remodeling complex. Loss of PBAF function increased tumor cell sensitivity to interferon-γ, resulting in enhanced secretion of chemokines that recruit effector T cells. Treatment-resistant tumors became responsive to immunotherapy when Pbrm1 was inactivated. In many human cancers, expression of PBRM1 and ARID2 inversely correlated with expression of T cell cytotoxicity genes, and Pbrm1-deficient murine melanomas were more strongly infiltrated by cytotoxic T cells.

View Full Text