Friday, March 22, 1895.

CONTENTS:

Argon: Ira Remsen ... 309
The Fundamental Difference between Animals and Plants: Charles S. Minot 311
The Best Order of Topics in a Two-year's Course of Anatomy in a Medical School: Frederic Henry Gerrish 312
Current Notes on Physiography (IV.): W. M. Davis .. 318
Annual Reception of the New York Academy: Henry F. Osborn 321
Correspondence: ... 324
An International Scientific Catalogue and Congress: Horatio Hale. 326
Scientific Literature: ... 326
Notes and News: ... 331
Biology; Welding of Iron; The Joint Commission of Scientific Societies of Washington; General. Societies and Academies: .. 334
Biological Society of Washington. Scientific Journals ... 335
New Books .. 336

MSS. intended for publication and books, etc., intended for review should be sent to the responsible editor, Prof. J. McKeen Cattell, Garrison on Hudson, N. Y. Subscriptions and advertisements should be sent to Science, 41 N. Queen St., Lancaster, Pa., or 41 East 49th St., New York.

ARGON.

The plain facts concerning argon are these: For some time past Lord Rayleigh has been engaged on refined work involving the weighing of various gases. Last year he found that the nitrogen obtained from the air is a little heavier than that made from definite chemical compounds. This led him to further experiments and, at the same time, Professor W. Ramsay, of University College, London, also undertook experiments with the object of explaining, if possible, the discrepancy. The general method of work consisted in passing air, first through substances that have the power to remove those constituents that are present in small quantities, such as water vapor, carbonic-acid gas, etc., then through a heated tube containing copper. The oxygen of the air unites with the heated copper, and what has hitherto been regarded as nitrogen remains uncombined. This 'atmospheric nitrogen' was subsequently treated in three different ways for the purpose of removing the nitrogen from it.

(1) It was drawn through clay pipes in the hope that, if the gas is a mixture, one of the constituents would pass through the porous material more easily than the other, and at least a partial separation be thus effected. While something was accomplished in this way, the experiment was on the whole unsatisfactory.

(2) The 'atmospheric nitrogen' was mixed with oxygen in a vessel containing caustic alkali, and electric sparks were passed through the mixture. Under these circumstances the oxygen united with nitrogen and formed a compound which is soluble in alkali. After no further absorption of nitrogen could be effected by sparking, any unchanged oxygen present was removed, and there was then found a residue